Edexcel Maths C3

Topic Questions from Papers

Exponentials & Logarithms

7. A particular species of orchid is being studied. The population p at time t years after the study started is assumed to be

$$p = \frac{2800a \,\mathrm{e}^{0.2t}}{1 + a \,\mathrm{e}^{0.2t}}$$
, where a is a constant.

Given that there were 300 orchids when the study started,

(a) show that a = 0.12,

(3)

(b) use the equation with a = 0.12 to predict the number of years before the population of orchids reaches 1850.

(4)

(c) Show that $p = \frac{336}{0.12 + e^{-0.2t}}$.

(1)

(d) Hence show that the population cannot exceed 2800.

(2)

	(Total 10 n	marka)

4. A heated metal ball is dropped into a liquid. As the ball cools, its temperature, T° C, t minutes after it enters the liquid, is given by

$$T = 400 \,\mathrm{e}^{-0.05t} + 25, \quad t \geqslant 0.$$

(a) Find the temperature of the ball as it enters the liquid.

(1)

(b) Find the value of t for which T = 300, giving your answer to 3 significant figures.

(4)

(c) Find the rate at which the temperature of the ball is decreasing at the instant when t = 50. Give your answer in °C per minute to 3 significant figures.

(3)

(d) From the equation for temperature T in terms of t, given above, explain why the temperature of the ball can never fall to $20 \,^{\circ}$ C.

(1)

- 1. Find the exact solutions to the equations
 - (a) $\ln x + \ln 3 = \ln 6$,

(2)

(b) $e^x + 3e^{-x} = 4$.

(4)

Leave
hlank

8. The amount of a certain type of drug in the bloodstream *t* hours after it has been taken is given by the formula

$$x = De^{-\frac{1}{8}t},$$

where x is the amount of the drug in the bloodstream in milligrams and D is the dose given in milligrams.

A dose of 10 mg of the drug is given.

(a) Find the amount of the drug in the bloodstream 5 hours after the dose is given. Give your answer in mg to 3 decimal places.

(2)

A second dose of 10 mg is given after 5 hours.

(b) Show that the amount of the drug in the bloodstream 1 hour after the second dose is 13.549 mg to 3 decimal places.

(2)

No more doses of the drug are given. At time *T* hours after the second dose is given, the amount of the drug in the bloodstream is 3 mg.

(c) Find the value of T.

(Total 7 marks)	Q8

5. The radioactive decay of a substance is given by

$$R = 1000e^{-ct}$$
, $t \ge 0$.

where R is the number of atoms at time t years and c is a positive constant.

(a) Find the number of atoms when the substance started to decay.

(1)

It takes 5730 years for half of the substance to decay.

(b) Find the value of c to 3 significant figures.

(4)

(c) Calculate the number of atoms that will be left when t = 22 920.

(2)

(d) In the space provided on page 13, sketch the graph of R against t.

(2)

12

- **4.** (i) Differentiate with respect to x
 - (a) $x^2 \cos 3x$

(3)

(b)
$$\frac{\ln(x^2+1)}{x^2+1}$$

(4)

(ii) A curve C has the equation

$$y = \sqrt{4x+1}$$
, $x > -\frac{1}{4}$, $y > 0$

The point *P* on the curve has *x*-coordinate 2. Find an equation of the tangent to *C* at *P* in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

(6)

Question 4 continued	

6.

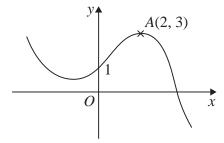


Figure 1

Figure 1 shows a sketch of the graph of y = f(x).

The graph intersects the y-axis at the point (0, 1) and the point A(2, 3) is the maximum turning point.

Sketch, on separate axes, the graphs of

- (i) y = f(-x) + 1,
- (ii) y = f(x + 2) + 3,
- (iii) y = 2f(2x).

On each sketch, show the coordinates of the point at which your graph intersects the *y*-axis and the coordinates of the point to which *A* is transformed.

(9)

- **9.** (i) Find the exact solutions to the equations
 - (a) ln(3x 7) = 5

(3)

(b) $3^x e^{7x+2} = 15$

(5)

(ii) The functions f and g are defined by

$$f(x) = e^{2x} + 3, \qquad x \in \mathbb{R}$$

$$x \in \mathbb{R}$$

$$g(x) = \ln(x - 1), \qquad x \in \mathbb{R}, \ x > 1$$

$$x \in \mathbb{R}, x > 1$$

(a) Find f^{-1} and state its domain.

(4)

(b) Find fg and state its range.

	 	_
	 	 -

(Total 15 marks) TOTAL FOR PAPER: 75 MARKS	
	Q9

4. Joan brings a cup of hot tea into a room and places the cup on a table. At time t minutes after Joan places the cup on the table, the temperature, θ °C, of the tea is modelled by the equation

$$\theta = 20 + Ae^{-kt},$$

where A and k are positive constants.

Given that the initial temperature of the tea was 90°C,

(a) find the value of A.

(2)

The tea takes 5 minutes to decrease in temperature from 90°C to 55°C.

(b) Show that $k = \frac{1}{5} \ln 2$.

(3)

(c) Find the rate at which the temperature of the tea is decreasing at the instant when t = 10. Give your answer, in °C per minute, to 3 decimal places.

	Leave
	blank
Question 4 continued	

5.

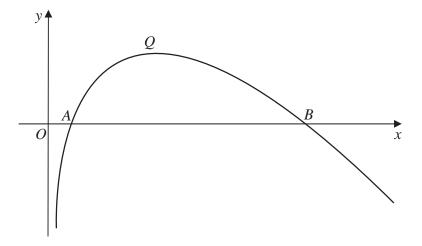


Figure 1

Figure 1 shows a sketch of part of the curve with equation y = f(x), where

$$f(x) = (8-x) \ln x, \quad x > 0$$

The curve cuts the x-axis at the points A and B and has a maximum turning point at Q, as shown in Figure 1.

(a) Write down the coordinates of A and the coordinates of B.

(2)

(b) Find f'(x).

(3)

(c) Show that the x-coordinate of Q lies between 3.5 and 3.6

(2)

(d) Show that the x-coordinate of Q is the solution of

$$x = \frac{8}{1 + \ln x}$$

(3)

To find an approximation for the x-coordinate of Q, the iteration formula

$$x_{n+1} = \frac{8}{1 + \ln x_n}$$

is used.

(e) Taking $x_0 = 3.55$, find the values of x_1 , x_2 and x_3 . Give your answers to 3 decimal places.

	Leave
Question 5 continued	blank
Question 5 continued	

5. The mass, m grams, of a leaf t days after it has been picked from a tree is given by

$$m = p e^{-kt}$$

where k and p are positive constants.

When the leaf is picked from the tree, its mass is 7.5 grams and 4 days later its mass is 2.5 grams.

(a) Write down the value of p.

(1)

(b) Show that $k = \frac{1}{4} \ln 3$.

(4)

(c) Find the value of t when $\frac{dm}{dt} = -0.6 \ln 3$.

(6)

Leave	
blank	

	r midday, is given by
$A = 20e^{1.5t}, t \geqslant 0$	
(a) Write down the area of the culture at midday.	(1)
(b) Find the time at which the area of the culture is twice its area a answer to the nearest minute.	nt midday. Give your

Le	eave
hl	ank

8. The value of Bob's car can be calculated from the formula

$$V = 17000e^{-0.25t} + 2000e^{-0.5t} + 500$$

where V is the value of the car in pounds (£) and t is the age in years.

(a) Find the value of the car when t = 0

(1)

(b) Calculate the exact value of t when V = 9500

(4)

(c) Find the rate at which the value of the car is decreasing at the instant when t = 8. Give your answer in pounds per year to the nearest pound.

(4)

	(4)

	Q
(Total 9 marks)	

8.

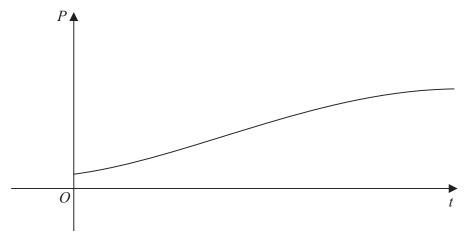


Figure 3

The population of a town is being studied. The population P, at time t years from the start of the study, is assumed to be

$$P = \frac{8000}{1 + 7e^{-kt}}, \qquad t \geqslant 0,$$

where k is a positive constant.

The graph of *P* against *t* is shown in Figure 3.

Use the given equation to

(a) find the population at the start of the study,

(2)

(b) find a value for the expected upper limit of the population.

(1)

Given also that the population reaches 2500 at 3 years from the start of the study,

(c) calculate the value of k to 3 decimal places.

(5)

Using this value for k,

(d) find the population at 10 years from the start of the study, giving your answer to 3 significant figures.

(2)

(e) Find, using $\frac{dP}{dt}$, the rate at which the population is growing at 10 years from the start of the study.

		Q

6. Find algebraically the exact solutions to the equations

(a) ln(4-2x) + ln(9-3x) = 2ln(x+1), -1 < x < 2

(5)

(b) $2^x e^{3x+1} = 10$

Give your answer to (b) in the form $\frac{a + \ln b}{c + \ln d}$ where a, b, c and d are integers.

(5)

Core Mathematics C3

Candidates sitting C3 may also require those formulae listed under Core Mathematics C1 and C2.

Logarithms and exponentials

$$e^{x \ln a} = a^x$$

Trigonometric identities

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \qquad (A \pm B \neq (k + \frac{1}{2})\pi)$$

$$\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}$$

$$\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

Differentiation

f(x) f'(x)
tan kx
$$k \sec^2 kx$$

sec x $\sec x \tan x$
cot x $-\csc^2 x$
cosec x $-\csc x \cot x$

$$\frac{f(x)}{g(x)} \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Core Mathematics C2

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$
where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2} x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r} x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b - a}{n}$

Core Mathematics C1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$